A data-driven model reduction method for parabolic inverse source problems and its convergence analysis
نویسندگان
چکیده
In this paper, we propose a data-driven model reduction method to solve parabolic inverse source problems with uncertain data efficiently. Our consists of offline and online stages. the stage, explore low-dimensional structures in solution space partial differential equations (PDEs) forward given class functions construct small number proper orthogonal decomposition (POD) basis achieve significant dimension reduction. Equipped POD functions, can extremely fast stage. Thus, develop algorithm optimization problem problems, which is referred as method. Moreover, design an posteriori find optimal regularization parameter using proposed without knowing noise level. Under weak regularity assumption on PDEs, prove convergence solving PDEs. addition, obtain error estimate for problems. Finally, present numerical examples demonstrate accuracy efficiency Numerical results show that provides considerable computational savings over finite element while maintaining same accuracy.
منابع مشابه
Convergence of a step-doubling Galerkin method for parabolic problems
We analyze a single step method for solving second-order parabolic initial–boundary value problems. The method uses a step-doubling extrapolation scheme in time based on backward Euler and a Galerkin approximation in space. The technique is shown to be a second-order correct approximation in time. Since step-doubling can be used as a mechanism for step-size control, the analysis is done for var...
متن کاملA Data-driven Method for Crowd Simulation using a Holonification Model
In this paper, we present a data-driven method for crowd simulation with holonification model. With this extra module, the accuracy of simulation will increase and it generates more realistic behaviors of agents. First, we show how to use the concept of holon in crowd simulation and how effective it is. For this reason, we use simple rules for holonification. Using real-world data, we model the...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Data-driven model reduction for the Bayesian solution of inverse problems
One of the major challenges in the Bayesian solution of inverse problems governed by partial differential equations (PDEs) is the computational cost of repeatedly evaluating numerical PDE models, as required by Markov chain Monte Carlo (MCMC) methods for posterior sampling. This paper proposes a data-driven projection-based model reduction technique to reduce this computational cost. The propos...
متن کاملInverse problems for parabolic equations
Let ut −∇2u = f(x) := ∑M m=1 amδ(x− xm) in D × [0,∞), where D ⊂ R3 is a bounded domain with a smooth connected boundary S, am = const, δ(x− xm) is the delta-function. Assume that u(x, 0) = 0, u = 0 on S. Given the extra data u(yk, t) := bk(t), 1 ≤ k ≤ K, can one find M,am, and xm? Here K is some number. An answer to this question and a method for finding M,am, and xm are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2023
ISSN: ['1090-2716', '0021-9991']
DOI: https://doi.org/10.1016/j.jcp.2023.112156